Paper/Photovoltaics

[논문해석]Linear Current Booster for Solar FED DC Pumps

얼죽아여뜨샤 2024. 2. 23. 01:00

0. 파일

Linear_current_booster_for_solar_FED_DC_pumps.pdf
0.58MB

 

 

1. 내용

(0) Abstract

Solar Photovoltaic systems are now widely being used for pumping purposes like drinking and irrigation. If the system has got a battery backup, there will be enough matching between the load and the source. But the systems without battery backup results poor co-ordination between load and source and the panel may even become unable to power the electric motor loads. Electric motors need high current during starting; hence there should be a current boosting mechanism that efficiently couples the PV panel with the DC motor. So, in this paper a linear current boosting technology to run the motor even under low solar irradiant conditions without stalling is being proposed. Linear Current Booster (LCB) is nothing but a converter topology along with Maximum Power Point Tracking (MPPT) for the efficient working of a direct solar pump. Working of a solar PV fed direct current pump was being simulated with and without Linear Current Booster using MATLAB software. The efficiency of the solar pump was found increased more than 60% using this technology.

태양 광전지 시스템은 음료 및 관개와 같은 펌핑 목적으로 널리 사용되고 있습니다. 시스템에 배터리 백업이 있는 경우, 부하와 원본 간에 충분한 일치가 있습니다. 그러나 배터리 백업이 없는 시스템은 부하와 원본 간의 조화가 떨어지며, 패널은 심지어 전기 모터 부하를 공급할 수 없게 될 수도 있습니다. 전기 모터는 시작할 때 높은 전류가 필요하기 때문에, PV 패널과 DC 모터를 효과적으로 결합하는 전류 부스팅 메커니즘이 있어야 합니다. 따라서 본 논문에서는 저 일사량 조건에서도 모터를 멈추지 않고 운전할 수 있는 선형 전류 부스팅 기술을 제안하고 있습니다. 선형 전류 부스터(LCB)는 직접적인 태양 펌프의 효율적인 작동을 위한 컨버터 토폴로지와 최대 전력점 추적(MPPT)과 같은 기술입니다. MATLAB 소프트웨어를 사용하여 선형 전류 부스터를 사용한 경우와 사용하지 않은 경우에 태양 광전지로 구동되는 직류 펌프의 작동이 시뮬레이션되었습니다. 이 기술을 사용하면 태양 펌프의 효율이 60% 이상 향상된 것으로 나타났습니다.

 

(1) Introduction

Solar energy is one among the most abundant energy resources.Solar cells are devices that convert the energy from sunlight directly into electricity by the photovoltaic effect. The first solar cell was invented in 1954 at Bell Laboratories and was a boom to Power Electronic industry. The major components of solar water pumping system are solar panel or array, a pump controller and the pump set. In this paper instead of a pump controller a dc-dc converter topology called linear current booster to run the pump under low sun conditions thereby increasing the working hours and flow rate is introduced. Solar water pumping system can be AC or DC system. Direct Current water pumps are widely used due to its high efficiency and simplicity over other pump sets even though they are having many problems in the case of directly coupled system, but it can be reduced by the usage of any converter topologies [4], [5]. In this paper, for simulation a panel of 250W rating is used to run a motor of 200W rating. There are chances that a power lapse occurs, resulting in pump failure and stalling. So the array should be somewhat oversized than the load, especially when it is an electrical motor load. Even a double oversizing is permitted. The paper deals with the MATLAB simulation of a solar direct pump.

태양 에너지는 가장 풍부한 에너지 자원 중 하나입니다. 태양 전지는 태양광 효과를 통해 태양빛의 에너지를 직접 전기로 변환하는 장치입니다. 최초의 태양 전지는 1954년 벨 연구소에서 발명되었으며, 전력 전자 산업에 큰 도약을 가져왔습니다. 태양 수 워터 펌핑 시스템의 주요 구성 요소는 태양 패널 또는 어레이, 펌프 컨트롤러 및 펌프 세트입니다. 이 논문에서는 펌프 컨트롤러 대신 저 일사량 조건에서 펌프를 구동하기 위한 DC-DC 컨버터 토폴로지인 선형 전류 부스터를 소개하여 작동 시간과 유량을 증가시킵니다. Solar water pumping system은 AC 또는 DC 시스템이 될 수 있습니다. Direct Current water pumps는 직접 결합된 시스템의 경우에도 다른 펌프 세트보다 높은 효율성과 간단함으로 인해 널리 사용되지만, 직접 결합된 시스템의 경우 많은 문제가 발생할 수 있으나, 이는 어떤 컨버터 토폴로지의 사용으로 줄일 수 있습니다. 이 논문에서는 시뮬레이션을 위해 250W 등급의 패널을 사용하여 200W 등급의 모터를 구동합니다. 펌프 고장 및 멈춤을 초래할 수 있는 전원 중단이 발생할 수 있으므로, 특히 전기 모터 부하의 경우 어레이가 부하보다 다소 크게 설계되어야 합니다. 이 논문은 태양 직접 펌프의 MATLAB 시뮬레이션을 다룹니다.

 

MATLAB software is one of the most widely used tools for Power System as well as Power Electronic applications. This is real time software where we can even program things or else can use the inbuilt Simulink blocks. Some of the industries are also employing the same for their works [6]. The major problem regarding the practical implementation is that the simulation results should go in hand with the hardware implementation if done.

MATLAB 소프트웨어는 전력 시스템 및 전력 전자 응용 프로그램 중 가장 널리 사용되는 도구 중 하나입니다. 이것은 실시간 소프트웨어로, 우리는 심지어 프로그램을 작성하거나 내장된 Simulink 블록을 사용할 수 있습니다. 일부 산업도 자신들의 작업에 동일한 소프트웨어를 사용하고 있습니다. 실제 구현에 대한 주요 문제는 시뮬레이션 결과가 하드웨어 구현과 일치해야 한다는 것입니다.

 

MPPT control algorithm is used to extract the maximum power from a PV array. DC converter topologies like boost, buck, buck-boost, cuk and sepic converters have been tested till date for dc applications, but the main concern is the maximum power point. Many algorithms like Open circuit method, Short circuit method, Hill climbing, P and O, Artificial Neural Network, Fuzzy Logic etc. are now developed to track the output voltage of the panel. The after effect of changes in the cell temperature and solar irradiance on the panel voltage will decide the choice and design of different topologies of DC-DC converter to be used in the photovoltaic (PV) systems [9]. When there is any fluctuation in the climatic conditions, the maximum power point i.e. MPP of the PV array may vary. We employ maximum power point trackers (MPPT) to adjust the converter duty ratio to track the new Maxima [8]. Thus a good converter topology must be chosen which is able to match the maximum point under the different atmospheric conditions. When the duty cycle changes, as a result of this change in climatic conditions, the converter parameters should be changed as well. Once it is erected we cannot change the design aspects. So an optimum design strategy has to be followed. A solar photovoltaic energy conversion system requires certain power converters for the maximum power extraction and for grid integration. In order to develop an efficient and reliable photovoltaic energy conversion technology there should be something that effectively couple the PV with the load (here PMDC motor). Typical converter configurations suffer from many problems such as effective load-source matching. So we go for a new technique.

MPPT(최대 전력점 추적) 제어 알고리즘은 태양광 배열로부터 최대 전력을 추출하는 데 사용됩니다. 부스트, 버킷, 버킷-부스트, 쿡 및 세픽 변환기와 같은 DC 컨버터 토폴로지는 현재까지 DC 응용 분야에 대해 테스트되어 왔지만, 주요 관심사는 최대 전력 점입니다. Open circuit method, Short circuit method, Hill climbing, P and O, 인공 신경망, 퍼지 로직 등과 같은 많은 알고리즘들이 패널의 출력 전압을 추적하기 위해 개발되었습니다. 셀 온도 및 태양 광량의 변화가 패널 전압에 미치는 영향은 태양광 시스템에 사용할 다양한 DC-DC 컨버터 토폴로지의 선택과 설계를 결정합니다. 기후 조건의 변동이 있을 때, 태양광 배열의 최대 전력점인 MPP가 변할 수 있습니다. 우리는 최대 전력점 추적기(MPPT)를 사용하여 변환기 duty ratio를 조정하여 새로운 최대값을 추적합니다. 따라서 다양한 기상 조건에서 최대점을 일치시킬 수 있는 좋은 변환기 토폴로지를 선택해야 합니다. 변환기 매개 변수는 기후 조건의 변화로 인해 duty cycle이 변경되면 변경되어야 합니다. 설치한 후에는 디자인 측면을 변경할 수 없습니다. 따라서 최적의 설계 전략을 따라야 합니다. 태양광 전력 변환 시스템은 최대 전력 추출 및 그리드 통합을 위한 일부 전력 컨버터가 필요합니다. 효율적이고 신뢰할 수 있는 태양광 에너지 변환 기술을 개발하기 위해서는 PV와 부하(여기서는 PMDC 모터)를 효과적으로 결합하는 것이 필요합니다. 전형적인 컨버터 구성은 효과적인 load-source 일치 문제 등 다양한 문제를 겪습니다. 따라서 우리는 새로운 기술을 선택합니다.

 

(2) Linear Current Booster

In a PV panel the power produced at the maximum power point is relatively having low current and high voltage which is opposite to the requirement of a pump and motor assembly, so maximum power point trackers are employed to overcome this mismatch and obviously increase the efficiency by converting the power into high-current and low-voltage which satisfies the pump motor characteristics. Linear current booster will act as a MPPT also and improves the load-source match. Much research is being made in this area. If it works as per the expectations, it will be a boon to the solar photovoltaic technology. To design a solar water pumping system it is essential to quantify the available solar energy. A current boosting is essential, especially in the case of motor applications.

태양광 패널에서 최대 전력 점에서 생산되는 전력은 상대적으로 저전류 고전압이므로 이는 펌프 및 모터 조립의 요구와 반대됩니다. 따라서 최대 전력점 추적기가 이러한 불일치를 극복하고 전력을 고전류 저전압으로 변환하여 펌프 모터 특성을 충족시키는 효율을 증가시킵니다. 선형 전류 부스터는 MPPT 역할도 하고 부하-원본 일치를 향상시킵니다. 이 분야에서 많은 연구가 이루어지고 있습니다. 기대에 따라 작동한다면, 이는 태양광 전지 기술에 큰 도움이 될 것입니다. 태양 수 워터 펌핑 시스템을 설계하려면 사용 가능한 태양 에너지를 양적화하는 것이 중요합니다. 특히 모터 응용 프로그램의 경우 전류 부스팅이 필수적입니다.

 

(3) Proposed System

In this proposed system, the major components are the solar panel, MPPT controller, LCB, DC motor and a centrifugal pump. A solar panel of 250 W is used to drive a 200W motor. A linear current boosting and MPPT technology is being incorporated such that the efficiency of the overall system is improved. Each component are properly designed and simulated in MATLAB.

이 제안된 시스템에서 주요 구성 요소는 태양광 패널, MPPT 컨트롤러, LCB, 직류 모터 및 원심 펌프입니다. 250W의 태양광 패널이 200W 모터를 구동하는 데 사용됩니다. 선형 전류 부스팅과 MPPT 기술이 포함되어 전체 시스템의 효율성이 향상됩니다. 각 구성 요소는 MATLAB에서 적절하게 설계되고 시뮬레이션됩니다.

 

A solar cell is the basic building block of a solar panel. A solar module is formed by connecting many solar cells in series and parallel and many modules constitute an array. The equivalent circuit of a solar cell is shown below:

태양 전지는 태양광 패널의 기본 구성 요소입니다. 태양 전지 모듈은 여러 태양 전지를 직렬 및 병렬로 연결하여 형성되며, 많은 모듈이 배열을 구성합니다. 태양 전지의 등가 회로는 아래에 표시되어 있습니다:

Current equation for a solar cell is

 

(4) MPPT

The efficiency of a solar cell is very low compared to other renewable technologies. A typical solar panel can convert only 30% of the incident solar radiation into electrical energy [7]. For increasing the efficiency of solar panel some techniques are used to match the source and load properly like the Maximum Power Point Tracking (MPPT).

태양 전지의 효율은 다른 재생 가능 기술에 비해 매우 낮습니다. 전형적인 태양광 패널은 들어오는 태양 복사 에너지의 약 30%만을 전기 에너지로 변환할 수 있습니다. 태양 패널의 효율을 높이기 위해 최대 전력점 추적(MPPT)과 같은 기술이 사용되어 소스와 부하를 적절하게 일치시키기 위한 기법이 적용됩니다.

 

Perturb and Observe technique is one of the promising MPPT techniques. P and O require only few sensors for tracking. The implementation cost is also low compared to other tracking algorithms [3]. Change in voltage accompanied with a change in power is observed here. Likewise the algorithm changes to track the peak power. But in some cases oscillations may occur so we go for soft computing techniques to fix the maximum power point. If the change in voltage as well as the change in power is having the same sign the next perturbation should be positive else negative. On the left of MPP the increase in voltage will lead to an increased power but in right of MPP increase in voltage will decrease the power. This can be summarized as an algorithm and coded as program.

Perturb and Observe 기법은 유망한 MPPT 기술 중 하나입니다. P and O는 추적을 위해 필요한 센서가 매우 적습니다. 구현 비용도 다른 추적 알고리즘과 비교하여 낮습니다. 전압 변화와 함께 전력 변화가 관찰됩니다. 마찬가지로 알고리즘은 최대 전력을 추적하기 위해 변경됩니다. 그러나 경우에 따라 진동이 발생할 수 있으므로 최대 전력 점을 수정하기 위해 소프트 컴퓨팅 기술을 사용합니다. 전압 및 전력의 변경이 동일한 부호를 가질 경우 다음 변조는 양수여야 하고 그렇지 않으면 음수여야 합니다. 최대 전력점의 왼쪽에서 전압의 증가는 전력의 증가로 이어질 것이지만 최대 전력점의 오른쪽에서 전압의 증가는 전력의 감소로 이어집니다. 이것은 알고리즘으로 요약되어 프로그램으로 코드화될 수 있습니다.

 

(5) LCB

The LCB is used in special cases where only a boost of current is needed. This means a decrease in voltage along with a boost in current in order to keep the output power equal to input power. Since only a decrease in voltage is required, no boosting is needed in the converter. Hence, a simple buck converter along with associated tracking and control electronics will meet the design requirements of the device. But during the course of running of the motor an increased voltage will be needed. Hence boost converter can also be accommodated. It is essential to match the DC pump and panel characteristics and also to improve the flow rate.

LCB는 전류 부스팅이 필요한 특별한 경우에 사용됩니다. 이는 출력 전력을 입력 전력과 동일하게 유지하기 위해 전압을 감소시키고 전류를 부스팅해야 한다는 것을 의미합니다. 전압 감소만 필요하므로 변환기에서는 부스팅이 필요하지 않습니다. 따라서 간단한 버크 컨버터와 관련된 추적 및 제어 전자 기기만으로도 장치의 설계 요구 사항을 충족시킬 수 있습니다. 그러나 모터를 작동하는 동안 전압이 증가해야 합니다. 따라서 부스트 컨버터도 수용할 수 있습니다. DC 펌프와 패널의 특성을 일치시키고 유량을 향상시키는 것이 중요합니다.

Buck-converter

 (6) Motor and Pump

A DC motor in is a device that converts electrical energy into mechanical energy. Many kinds of DC motors are available in the market now a day. But PMDC motor is chosen due to its superior qualities like simple construction, robustness, reliability, stability and adaptability. No separate excitation is needed for this type of motors.

DC 모터는 전기 에너지를 기계 에너지로 변환하는 장치입니다. 현재 시장에는 다양한 종류의 DC 모터가 있습니다. 그러나 PMDC 모터는 간단한 구조, 견고성, 신뢰성, 안정성 및 적응성과 같은 우수한 품질로 인해 선택됩니다. 이러한 유형의 모터에는 별도의 자기 활성화가 필요하지 않습니다.

The centrifugal pumps arethe most widely used pump types around the globe and it will work on the principle that, when some mass of liquid/fluid is forced to rotate along an impeller from the central axis of rotation, it impresses a centrifugal head over it and causes the fluid to move radially outwards[1],[2]. This occurs at higher velocity and hence the water rises to a higher level.

원심 펌프는 전 세계적으로 가장 널리 사용되는 펌프 유형 중 하나이며, 일정량의 액체/유체를 중심 회전축에서 떨어져 있는 임펠러를 따라 회전하도록 강제함으로써 원심력을 작용시키고, 결과적으로 유체를 방사형으로 외부로 이동시킵니다. 이 과정은 높은 속도에서 발생하며, 따라서 물은 더 높은 수위로 상승합니다.

 

The motor and pump are coupled. The efficiency and performance can be rated based on the flow rate of the pump or angular velocity of the motor. In the case of this DC system the input is DC supply. So we can use some battery or other DC sources to supply the load. He the solar panel serves as the source for the overall system.

모터와 펌프는 결합됩니다. 효율성과 성능은 펌프의 유량 또는 모터의 각속도에 기반하여 등급이 매겨질 수 있습니다. 이 DC 시스템의 경우 입력은 DC 전원입니다. 따라서 일부 배터리 또는 다른 DC 원본을 사용하여 부하를 공급할 수 있습니다. 여기서 태양 패널은 전체 시스템의 source로 작용합니다.

 

(7) Simulation and Results

The simulation was done using MATLAB Simulink and Embedded MATLAB Editor. Various components were designed and simulated to obtain the overall system requirements. A Panel of 250W, 48V and DC motor of 200W, 36V was used for simulation purpose.

시뮬레이션은 MATLAB Simulink 및 Embedded MATLAB Editor를 사용하여 수행되었습니다. 전반적인 시스템 요구 사항을 얻기 위해 다양한 구성 요소가 설계되고 시뮬레이션되었습니다. 시뮬레이션 목적으로 250W, 48V 패널 및 200W, 36V DC 모터가 사용되었습니다.

Solar module consists of 10 cells connected in series and 6 cells in parallel. The output power will be a maximum of 250W. This has been mathematically modeled and coded in MATLAB editor using user defined function and MATLAB Simulink as well. A subsystem was created for the simulation of solar panel and the details used are tabulated:

태양 모듈은 직렬로 연결된 10개의 셀과 병렬로 연결된 6개의 셀로 구성됩니다. 출력 전력은 최대 250W입니다. 이것은 수학적으로 모델링되었으며 사용자 정의 함수와 MATLAB Simulink를 사용하여 MATLAB 편집기에 코드화되었습니다. 태양 패널의 시뮬레이션을 위한 서브시스템이 생성되었으며 사용된 세부 정보는 테이블로 정리되었습니다:

 

The solar cell is considered as a voltage depended current source. For a single cell the voltage and current variation under constant irradiation was plotted. The output obtained is shown below:

태양 전지는 전압에 따라 변하는 전류 소스로 간주됩니다. 단일 셀의 경우, 일정한 조사 아래 전압과 전류 변화를 그래픽으로 나타냈습니다. 얻은 출력은 아래에 표시되었습니다:

 

The input to MPPT is current and voltage from the panel. The output of which is given to the boosting circuit. This will change the duty ratio of LCB for maximizing the output further. The output from the MPPT is given as the control signal to the gate of IGBT. And the LCB in turn drives the motor. This is basically a buck boost converter that matches the PV array and motor. This has got the current boosting capacity so that it will make the motor run even during low irradiance. The overall efficiency of the system was found increased using this converter topology. Output power of LCB and MPPT are plotted and tabulated. The output from the LCB is given to the PMDC motor and a Demuxis used to obtain the required parameters. Among them angular velocity output is given as the input to the Centrifugal pump via an angular velocity source (AGS). Hydraulic fluid is circulated in each loop for priming. The pump has got an inlet and outlet connection with the reservoir, hence the tank volume remains the same. Pressure relief valves (PRV) are provided for the pump connection. In case there occur a high pressure situation, it can be turned on to relieve the excess pressure.

MPPT에 입력되는 것은 패널로부터의 전류와 전압입니다. 이것의 출력은 부스트 회로에 제공됩니다. 이는 LCB의 듀티 비를 변경하여 출력을 더 최대화합니다. MPPT의 출력은 IGBT 게이트로의 제어 신호로 사용됩니다. 그리고 LCB는 다시 모터를 구동합니다. 이것은 기본적으로 PV 배열과 모터를 맞추는 버크 부스트 컨버터입니다. 이것은 전류 부스팅 기능을 갖추고 있으므로 낮은 일사량에서도 모터를 작동시킵니다. 이 변환기 토폴로지를 사용하면 시스템의 전체 효율이 증가하는 것으로 나타났습니다. LCB와 MPPT의 출력 전력이 그래프로 그려지고 표로 나타냅니다. LCB의 출력은 PMDC 모터로 주어지고 필요한 매개 변수를 얻기 위해 Demux가 사용됩니다. 그 중에서도 각속도 출력이 회전 용적 소스(AGS)를 통해 원심 펌프로의 입력으로 제공됩니다. 각 루프에서 유체가 순환되어 시작됩니다. 펌프에는 수조와 연결된 입구 및 출구 연결이 있으므로 수조 용량이 동일하게 유지됩니다. 펌프 연결에는 과압 상황이 발생할 경우 과압을 해소하기 위한 압력 완화 밸브(PR V)가 제공됩니다. 만약 고압 상황이 발생하면 이를 완화하기 위해 켜질 수 있습니다.

 

Many power system and power electronic components are interconnected for the simulation purpose using suitable links. Overall simulation diagram is shown below. Which consists of many subsystems.

여러 전력 시스템 및 전력 전자 구성 요소가 적절한 링크를 사용하여 시뮬레이션을 위해 상호 연결되었습니다. 전체 시뮬레이션 다이어그램은 다음과 같습니다. 이 다이어그램에는 많은 서브시스템이 포함되어 있습니다.

The final output curve was plotted between the flow rate and working hours for a directly coupled system and the system with LCB.

직접 결합된 시스템과 LCB가 있는 시스템 간의 흐름 속도와 작업 시간 사이의 최종 출력 곡선을 그렸습니다.

The effective area under the curve increases by the use of MPPT and LCB. The system which is directly coupled is less efficient and starts very late compared to the other. The pump works up to 6 hours without LCB while it works for 10 hours with LCB. Efficiency is being increased up to 60% theoretically. In phase 2 this will be practically implemented with further improvements. Losses will be there but still overcome other difficulties.

MPPT 및 LCB의 사용으로 인해 곡선 아래의 유효 영역이 증가합니다. 직접 결합된 시스템은 다른 시스템과 비교하여 효율성이 낮으며 매우 늦게 시작됩니다. LCB 없이 펌프는 6시간까지 작동하며, LCB가 있는 경우 10시간까지 작동합니다. 이론적으로 효율성이 최대 60%까지 증가합니다. 2단계에서는 이러한 변화를 실제로 구현하고 추가적인 개선을 진행할 것입니다. 손실은 있을 수 있지만 다른 어려움을 극복할 것입니다.

 

(8) Conclusion

The results show that the direct-coupled PV water pumping system has a severe disadvantage because the pump stays idle for two hours more in the morning while the same system using LCB has already started pumping water [10]- [12]. Similar case repeats during evening time also. The solar water pumping system without LCB has poor efficiency due to the mismatch between the PV panel and the DC motor load. It enables to motor to pump up to 60% more water than the system without MPPT.

결과는 직접 결합된 태양광 워터 펌핑 시스템이 심각한 단점을 가지고 있음을 보여줍니다. 같은 시스템이 LCB를 사용하는 경우 이미 물을 펌핑하기 시작했지만 펌프가 아침에 2시간 더 대기하는 것을 나타냅니다. 저녁 시간에도 비슷한 경우가 반복됩니다. LCB가 없는 태양광 수 워터 펌핑 시스템은 PV 패널과 DC 모터 부하 간의 불일치로 인해 효율성이 낮습니다. 이는 MPPT가 없는 시스템보다 모터가 물을 펌핑하는 데 60% 이상 더 허용한다는 것을 의미합니다.

The linear current booster will help the PV-direct pump to run earlier in the morning, keep it running later in the evening, and sometimes have a possibility of running on hazy or cloudy days. An LCB will convert excess PV voltage into extra amperage when the modules are not producing quite enough current for the pump. And we can see that the flow rate is increased up to 60%. I am sure that this project will be highly useful to the manufactures of solar pumps and their beneficiaries like farmers.

선형 전류 부스터는 PV 직결 펌프가 아침에 더 빨리 작동하도록 도와주며, 저녁에 더 오래 작동하도록 유지하고 때로는 흐린 날에도 작동할 수 있는 가능성이 있습니다. LCB는 모듈이 펌프에 충분한 전류를 생산하지 않을 때 추가적인 전류로 과잉 PV 전압을 변환합니다. 그리고 흐름률이 최대 60%까지 증가하는 것을 확인할 수 있습니다. 이 프로젝트는 태양광 펌프 제조업체 및 농민과 같은 수혜자들에게 매우 유용할 것으로 확신합니다.