0. 원문
1. 내용
(0) Abstract
This paper proposes a simple but effective method of electric brake with energy regeneration for a brushless dc motor of an electric vehicle (EV).
During the braking period, the proposed method only changes the switching sequence of the inverter to control the inverse torque so that the braking energy will return to the battery.
Compared with the presented methods, the proposed solution simultaneously achieves dual goals of the electric brake and the energy regeneration without using additional converter, ultracapacitor, or complex winding-changeover technique.
Since the braking kinetic energy is converted into the electrical energy and then returns to the battery, the energy regeneration could increase the driving range of an EV.
In addition to the braking period, the duration of release throttle is also included in the energy-regenerative mechanism such that the EV is similar to engine vehicles having the engine brake.
Therefore, the electric brake can improve rider’s comfort and enhance the EV’s safety.
Finally, the feasibility of the proposed method is demonstrated by experimental results.
It shows that the driving range of the EV could be increased to about 16.2%.
이 논문은 전기차(EV)의 brushless dc motor에 대한 단순하지만 효과적인 에너지 회생 전기 제동 방법을 제안합니다.
제안된 방법은 제동 기간 동안, 인버터의 스위칭 순서만 변경하여 역 토크를 제어하여 제동 에너지가 배터리로 반환되도록 합니다.
제안된 솔루션은 추가 변환기, 초콘덴서 또는 복잡한 와인딩 전환 기술을 사용하지 않으면서도 전기 제동과 에너지 회생의 두 가지 목표를 동시에 달성합니다.
제동 운동 에너지가 전기 에너지로 변환되고 배터리로 반환되기 때문에, 에너지 회생은 EV의 주행 거리를 증가시킬 수 있습니다.
제동 기간 외에도, 스로틀 해제 기간도 에너지 회생 메커니즘에 포함되어 EV가 엔진 제동장치를 가진 엔진 차량과 유사해집니다.
따라서 전기 제동은 라이더의 편의성을 향상시키고 EV의 안전성을 향상시킬 수 있습니다.
마지막으로, 제안된 방법의 실행 가능성은 실험 결과로 증명됩니다. 이를 통해 EV의 주행 거리를 약 16.2% 증가시킬 수 있다는 것을 보여줍니다.
(1) Introduction
Recently, because environmental pollution and the energy crisis are rising globally, most industrialized countries have been attempting to reduce their dependence on oil as a source of energy.
Therefore, electric vehicles (EVs) are promising instead of traditional vehicles.
Most EVs, including electric cars, electric scooters, electric bicycles, electric wheelchairs, etc., are driven by electricity stored in a battery.
However, EVs still suffer from the main problem as short driving range.
Hence, how to use the battery’s energy efficiently is an important issue for developing EVs [1]–[19].
Brushless dc motors (BLDCMs) have many advantages over brushed dc motors and induction motors, such as simple structure, high efficiency, high dynamic response, higher speed range, large starting torque, noiseless operation, etc. Thus, BLDCM has been applied in many fields.
In particular, the BLDCM of the hub type is widely used in the EVs, because it has many advantages, such as: reduced hardware size and weight, simplified transmission mechanism, no reduction gear, and high efficiency of driving system, etc.
Hence, this paper applies two hub BLDCMs in a light EV (LEV).
최근에는 환경 오염과 에너지 위기가 전 세계적으로 증가하면서, 대부분의 산업화된 국가들이 에너지원으로서의 석유 의존도를 줄이려고 노력하고 있습니다.
따라서 전통적인 차량 대신에 전기차(EVs)가 유망한 대안으로 간주되고 있습니다.
전기 자동차, 전기 스쿠터, 전기 자전거, 전기 휠체어 등을 포함한 대부분의 EVs는 전지에 저장된 전기로 구동됩니다.
그러나 EVs는 여전히 주행 거리가 짧다는 주요 문제를 안고 있습니다.
따라서 배터리의 에너지를 효율적으로 사용하는 방법은 EVs를 개발하는 데 중요한 문제입니다.
브러시리스 직류 전동기(BLDCMs)는 간단한 구조, 높은 효율성, 뛰어난 동적 응답, 더 높은 속도 범위, 큰 기동 토크, 무소음 운전 등의 장점을 갖고 있어 브러시드 직류 모터 및 교류 모터에 비해 많은 장점이 있습니다.
따라서 BLDCM은 많은 분야에 적용되어 왔습니다. 특히, 허브 형태의 BLDCM은 EVs에서 널리 사용되고 있으며, 하드웨어 크기와 무게가 줄어들고, 전달 메커니즘이 간소화되며, 감속 기어가 없으며, 주행 시스템의 효율성이 높아진다는 장점을 갖고 있습니다.
따라서 본 논문에서는 경량 EV(LEV)에 두 개의 허브 BLDCM을 적용합니다.
Conventionally, EVs use mechanical brake to increase the friction of wheel for the deceleration purpose.
However, from the viewpoint of saving energy, the mechanical brake dissipates much energy since the EV’s kinetic energy is converted into the thermal one.
In view of this, this paper discusses how to convert the kinetic energy into the electrical one that can be recharged to the battery.
Thus, both the electric brake and energy regeneration are achieved.
일반적으로, EVs는 감속을 위해 휠의 마찰을 증가시키기 위해 기계 제동을 사용합니다.
그러나 에너지를 절약하는 관점에서, 기계 제동은 EV의 운동 에너지가 열 에너지로 변환되기 때문에 많은 에너지를 소비합니다.
이에 대응하여, 이 논문에서는 운동 에너지를 배터리로 충전할 수 있는 전기 에너지로 변환하는 방법에 대해 논의합니다.
따라서 전기 제동과 에너지 회생을 모두 달성합니다.
Thus far, many articles have discussed the braking energy regeneration of the EV [5]–[19].
The so-called energyregenerative brake mainly employs the back electromotive force (EMF) of the motor in the braking process.
The back EMF is regarded as a voltage source to recharge in the battery.
However, the maximum back EMF is generally lower than the battery voltage even if the EV is driven at its highest speed.
Thus, if one would like to recharge the back EMF to the battery, the back EMF voltage must be boosted.
Therefore, many articles have proposed a dc/dc converter to achieve the braking energy regeneration [6]–[10]. Unfortunately, these methods need an additional dc/dc converter to reach the purpose.
Not to mention the cost increase, the converter also has the efficiency problem that results in additional energy dissipation.
지금까지 많은 논문에서 전기차(EV)의 제동 에너지 회생에 대해 논의되었습니다. 이러한 에너지 회생 제동은 주로 모터의 역전도 힘(EMF)을 사용합니다.
역전도 힘은 배터리를 충전하는 전압원으로 간주됩니다.
그러나 최대 역전도 힘은 일반적으로 EV가 최고 속도로 주행 중이더라도 배터리 전압보다 낮습니다.
따라서 역전도 힘을 배터리에 충전하려면 역전도 힘 전압을 높여야 합니다.
따라서 많은 논문에서는 제동 에너지 회생을 달성하기 위해 dc/dc 변환기를 제안하고 있습니다.
이러한 방법은 비용 증가뿐만 아니라 변환기가 추가 에너지 소모로 인한 효율성 문제도 있습니다.
Furthermore, some articles have proposed energyregenerative methods based on ultracapacitor parallel or series connections, which hope that the braking energy can be temporarily stored up in the ultracapacitor [11]–[16].
Although this method does not need an additional dc/dc converter, it needs additional power switches to achieve the energy regeneration.
Ultracapacitor
: 용량이 큰 커패시터로, 실험실 등에서는 일반적으로 커패시터의 커패시턴스 단위로 nF(나노패럿, 10-9 패럿, 10억분의 1 패럿) 내지 μF(마이크로패럿, 10-6 패럿, 100만분의 1 패럿)을 쓰는 데 비해 슈퍼커패시터는 무려 F(패럿) 단위를 사용한다.
학계에서는 울트라커패시터(UC: Ultra Capacitor), 전기이중층 커패시터(EDLC: Electric Double Layer Capacitor)로 부르며, 다른 이름으로 슈퍼커패시터(SC: Supercapacitor)/슈퍼콘덴서(SC: Super Condensor)라고도 부른다.
배터리 대비 100배 이상의 높은 출력특성으로 인해, 고출력을 요구하는 산업 및 전력 분야 사용
영하 40도에서 65도의 고온까지 안정적인 동작을 하며, 충방전 1,000,000회 이상 및 10년 이상의 수명의 신뢰성
However, it needs sensors to detect if the ultracapacitor is full charge; thus, additional discharge circuits are used to avoid overcharging before the next brake.
Accordingly, it makes the switching logic very complicated and not easy to be implemented.
In addition, the ultracapacitor is still very expensive.
더구나, 일부 논문에서는 울트라캐패시터 병렬 또는 직렬 연결을 기반으로 한 에너지 회생 방법을 제안하고 있습니다.
이 방법은 추가 dc/dc 변환기가 필요하지 않지만, 에너지 회생을 달성하기 위해 추가 전원 스위치가 필요합니다.
그러나 이 방법은 울트라캐패시터가 충전됐는지 감지하기 위한 센서가 필요하며, 다음 제동 전에 오버충전을 피하기 위해 추가 방전 회로를 사용합니다.
따라서 전환 로직이 매우 복잡하고 구현하기 어렵습니다.
게다가, 울트라캐패시터는 여전히 매우 비싸다는 단점이 있습니다.
Moreover, electronic gearshift technology is used with the energy-regenerative brake for EVs [17]–[19].
To implement the electronic gearshift, the motor must be designed as a multiple winding-connection type to provide the EV with various output torques.
Since the motor torque is directly proportional to the magnetic flux, the motor with higher winding inductance could induce higher torque.
Thus, if high output torque is needed to drive the EV in a short time, e.g., startup process, the motor’s windings must be changed with series connections to increase the winding inductances.
When the EV is driving at higher speed, the motor is unable to increase its rotational speed since the series windings result in a larger back EMF.
At this time, the windings must be changed to the parallel type such that the back EMF is reduced and the rotational speed can rise continuously.
On the other hand, since the series winding has the higher back EMF, the winding type will be changed as the series connection during the energy-regenerative mode.
However, even if the winding type is changed to the series connection, the back EMF voltage is still lower than the battery one. Hence, the braking energy must be also stored up in the ultracapacitor [18], [19].
또한, 전자 기어변속 기술이 EVs를 위한 에너지 회생 제동에 사용됩니다.
전자 기어변속을 구현하려면 모터를 다중 연결 유형으로 설계하여 EV에 다양한 출력 토크를 제공해야 합니다.
모터 토크는 직접적으로 자기 흐름과 비례하기 때문에, 더 높은 토크를 유발할 수 있는 높은 흐름 인덕턴스를 갖는 모터가 필요합니다.
따라서 EV를 짧은 시간에 구동하기 위해 높은 출력 토크가 필요한 경우(예: 시작 프로세스), 모터의 각선이 직렬 연결로 변경되어 인덕턴스를 증가시켜야 합니다.
EV가 더 높은 속도로 주행할 때 모터는 시리즈 연결로 인한 큰 역전도 힘으로 인해 회전 속도를 증가시킬 수 없습니다.
이때 역전도 힘이 감소되고 회전 속도가 계속 상승할 수 있도록 모터를 병렬 유형으로 변경해야 합니다.
한편, 시리즈 연결이 더 높은 역전도 힘을 갖고 있기 때문에 에너지 회생 모드 중에 시리즈 연결로 전환됩니다.
그러나 연결 유형이 시리즈로 변경되어도 역전도 힘 전압은 여전히 배터리의 것보다 낮습니다.
따라서 제동 에너지도 울트라캐패시터에 저장되어야 합니다.
The electronic gearshift, except the aforementioned disadvantages of the ultracapacitor, has the following problems.
The first is that the motor windings must be specially designed; the next is the winding changeover depends on many high-power switches (or latching relays) to finish the complex connections; and then it is difficult to have a smoothness of the gearshift transient, because the gearshift point is much related to the torque curve of each gear.
Additionally, the gearshift condition, considering the motor efficiency curve to each gear, makes the problem more complicated.
Accordingly, if the electronic gearshift is applied in the energy-regenerative area, it becomes very complicated for the controlled logic.
전자 기어변속은 울트라캐패시터의 언급된 단점 외에도 다음과 같은 문제점을 가지고 있습니다.
첫째로, 모터 각선은 특별히 설계되어야 합니다.
둘째로, 각선 전환은 복잡한 연결을 완료하기 위해 많은 고출력 스위치(또는 라칭 릴레이)에 의존합니다.
그리고 기어변속 순간의 부드러움을 얻는 것이 어렵습니다, 왜냐하면 기어변속 지점은 각 기어의 토크 곡선과 밀접한 관련이 있기 때문입니다.
게다가, 각 기어의 모터 효율 곡선을 고려한 기어변속 조건은 문제를 더 복잡하게 만듭니다.
따라서 전자 기어변속이 에너지 회생 영역에 적용되면 제어 로직이 매우 복잡해집니다.
In view of the aforementioned methods, this paper, based on the general BLDCMs without using boost converter, ultracapacitor, and multiple winding, is dedicated to developing a simple but effective method to convert the braking energy into the electrical one and then store up it in the battery.
The method has the properties of the electric brake and energy regeneration to increase the driving range, safeness, and cost effective of the EV.
In the actual application, the battery may be injured by the surge recovery current of the high-speed duration.
Thus, this paper proposes a controlled strategy which not only restrains the current to protect the battery but also provides a smooth and reliable brake.
In addition to the braking period, the release throttle is also included in the energy-regenerative mechanism such that the EV is similar to the engine braking effect.
It can improve rider’s comfort and enhance the EV’s safeness.
Throttle
: 스로틀, 즉 공기흡입구가 개방되면 연소실 안으로 공기가 유입되고 스로틀에 연동하여 연료 분사량도 조절되도록 조절하면 운전자가 페달을 밟는 강도에 비례하여 출력이 발생하는 시스템이 구성된다.
운전자는 가속페달을 밟고 떼면서 엔진 회전수를 조절한다. 가속페달을 밟으면 엔진이 빨리 돌고 밟지 않으면 천천히 도는 것을 이용해 자동차를 다룬다.
가솔린 엔진은 가속페달의 조작이 스로틀 밸브로 전달된다. 이것이 열고 닫히면서 흡기되는 공기의 양을 조절한다. 가속페달을 밟으면 열리고 밟지 않으면 닫히는 방식이다.
스로틀 밸브가 열려 흡입하는 공기가 많아지면 ECU가 이것을 파악하고 흡기량에 맞춰 엔진에 연료를 분사시킨다.
반대로 스로틀 밸브가 닫히면 흡입 공기량이 감소하고 그만큼 연료도 조금만 분사한다. 이에 따라 엔진이 힘을 내고 줄이는 것이다.
앞서 언급한 방법을 고려하여, 본 논문은 부스트 컨버터, 울트라캐패시터 및 다중 각선을 사용하지 않고도 일반 BLDCM을 기반으로 제동 에너지를 전기 에너지로 변환하고 배터리에 저장하기 위한 간단하면서도 효과적인 방법을 개발하는 데 전념하고 있습니다.
이 방법은 전기 제동 및 에너지 회생의 특성을 갖고 있어 주행 거리, 안전성 및 비용 효율성을 증가시킬 수 있습니다.
실제 응용에서 배터리는 고속 구간의 서지 회복 전류로 손상을 입을 수 있습니다.
따라서 본 논문은 배터리를 보호하기 위해 전류를 제한하면서도 부드럽고 신뢰할 수 있는 제동을 제공하는 제어 전략을 제안합니다.
제동 기간뿐만 아니라 스로틀 해제도 에너지 회생 메커니즘에 포함되어 EV가 엔진 제동 효과와 유사해집니다.
이는 탑승자의 편안함을 향상시키고 EV의 안전성을 향상시킬 수 있습니다.
Finally, experimental results are presented to verify the feasibility of the proposed method. Besides, a prototypical EV is developed to verify that the driving range could be effectively increased.
This paper is organized as follows.
Section I introduces the research motive and discusses the related current technologies.
Section II briefly analyzes the motor normal mode and the operating principle of the proposed energyregenerative method.
An EV system scheme is proposed in Section III.
Simulation and experimental results are shown in Section IV. Finally, Section V presents a conclusion.
마지막으로, 실험 결과를 제시하여 제안된 방법의 실행 가능성을 검증합니다.
또한, 주행 거리가 효과적으로 증가될 수 있는 것을 확인하기 위해 원형 EV를 개발합니다.
본 논문은 다음과 같이 구성되어 있습니다.
제 1장에서는 연구 동기를 소개하고 관련된 현재 기술을 논의합니다.
제 2장에서는 모터의 정상 모드와 제안된 에너지 회생 방법의 작동 원리를 간단히 분석합니다.
제 3장에서는 EV 시스템 구성도를 제안합니다.
시뮬레이션 및 실험 결과는 제 4장에 표시됩니다.
마지막으로, 제 5장에서는 결론을 제시합니다.
(2) Analysis and Operating Principle of the Energy-Regeneration
This work employs a hub BLDCM with sinusoidal back EMF. Fig. 1(a) shows an inverter and the equivalent circuit of the BLDCM.
In Fig. 1(a), R and L are, respectively, the armature resistance and inductance; ea, eb, and ec are, respectively, the armature back EMFs of the phase a, b, and c; ia, ib, and ic are, respectively, the armature currents of the phase a, b, and c. Fig. 1(b) shows the switching sequences of the normal and energy-regenerative modes for the BLDCM.
In Fig. 1(b), eab, ebc, and eca are the line-to-line armature back EMFs; H1 − H3 are the commutation signals (Hall sensor signals); S1 − S6 are the switching signals of the six power switches.
During the normal mode, the high side switches S1, S3, and S5 are operated in pulsewidth modulation (PWM) switching mode; the low side switches S2, S4, and S6 are operated in normal high or low.
To the contrary, all the switches are operated in PWM switching mode during the energy-regenerative mode.
이 작업에서는 사인파 역전자 기점을 갖는 허브 BLDCM을 사용합니다. 그림 1(a)은 인버터와 BLDCM의 동등 회로를 보여줍니다.
그림 1(a)에서 R과 L은 각각 armature 저항과 인덕턴스입니다.
ea, eb, ec는 각각 상 a, b 및 c의 armature역 EMF입니다.
ia, ib 및 ic는 각각 상 a, b 및 c의 armature전류입니다.
그림 1(b)은 BLDCM의 일반 및 에너지 회생 모드의 스위칭 순서를 보여줍니다.
그림 1(b)에서 eab, ebc 및 eca는 라인 간의 armature 역 EMF입니다.
H1 ~ H3은 교류 신호(할 센서 신호)입니다.
S1 ~ S6는 여섯 개의 전원 스위치의 스위칭 신호입니다.
일반 모드에서는 고 사이드 스위치 S1, S3 및 S5가 펄스폭 변조(PWM) 스위칭 모드에서 작동됩니다.
저 사이드 스위치 S2, S4 및 S6는 일반적으로 고 또는 저로 작동됩니다.
그러나 에너지 회생 모드에서는 모든 스위치가 PWM 스위칭 모드에서 작동됩니다.
A. Normal Mode
It can be seen from Fig. 1(b) that a complete commutation sequence consists of six state intervals (states I–VI).
For convenient analysis, Fig. 1(a) is simplified as Fig. 2(a) which shows one of six state intervals (state I) and its equivalent circuit.
During state I, the conduction mode represents that the switches S1 and S4 are turned on simultaneously.
The inductor current iab would be increased by the energized current loop ion of the winding.
At this time, since the magnetic field of the winding is increased due to iab increase, a reverse induction voltage eab has to resist the variation of the magnetic field according to Lenz’s Law.
That is the so-called the armature back EMF of the motor.
During another mode (freewheeling mode), the switch S1 is turned off, and S4 is still on such that the inductor current will flow into the freewheeling diode D2 and the switch S4, which makes a discharging current path ioff.
Accordingly, the corresponding sequences of S1, S4, input current iin and phase current iab are shown in Fig. 2(b).
The switching patterns of the states II–VI of Fig. 1(b) are similar to the state I, thus the analyses of states II–VI are omitted [20].
그림 1(b)에서 완전한 교류 순서는 여섯 개의 상태 간격(상태 I-VI)으로 구성됨을 볼 수 있습니다.
편리한 분석을 위해, 그림 1(a)는 하나의 여섯 개 상태 간격 (상태 I)과 해당 동등 회로를 보여주는 그림 2(a)로 단순화됩니다.
상태 I에서는, 스위치 S1과 S4가 동시에 켜진다는 것을 나타냅니다.
인덕터 전류 iab는 winding 전류 루프 ion에 의해 증가됩니다.
이 때, iab가 증가함에 따라 winding의 자기장도 증가하므로, 역 유도 전압 eab가 자기장의 변화에 저항해야 합니다.
이것이 바로 모터의 무게 역 EMF라고 불리는 것입니다.
다른 모드에서(프리휠링 모드), 스위치 S1이 꺼지고, S4는 여전히 켜져 있으므로, 인덕터 전류는 프리휠링 다이오드 D2와 스위치 S4로 흐를 것입니다, 이는 방전 전류 경로 ioff를 만들어냅니다.
따라서, 그림 2(b)에는 상태 I의 해당 S1, S4, 입력 전류 iin 및 상 전류 iab의 순서가 나타납니다.
그림 1(b)의 상태 II-VI의 스위칭 패턴은 상태 I과 유사하므로, 상태 II-VI의 분석은 생략됩니다.
B. Energy-Regenerative Mode
If the microcontroller unit (MCU) of the EV receives a brake signal, the motor operation should be changed from the normal mode into the energy-regenerative mode.
At this time, assume that the switching sequence is originally in the state I, as shown in Fig. 1(b).
Thus, the operating principle of the energyregenerative mode for the duration of the state I is analyzed.
Fig. 3(a) shows the equivalent circuit of the energyregenerative mode.
When the motor goes into the energyregenerative mode, the back EMF eab becomes a voltage source.
It has to change the switching sequence to the energyregenerative mode, i.e., turn on the switches S2 and S3.
Unlike the normal mode, both the switches S2 and S3 are operated in a synchronal PWM.
During the turn-on period of S2 and S3, the voltage vL is equal to Vbatt + eab, and the current iin is equal to −iab, or ion, because of the winding energizing.
On the contrary, during the turn-off period of S2 and S3, the current iin, which flows through the freewheeling diodes D1 and D4, is equal to iab and makes a current path ioff return to the battery.
Accordingly, the corresponding sequences of S2, S3, the input current iin and the phase current iab are shown in Fig. 3(b).
이 논문에서는 주어진 브레이크 신호에 따라 전기차(EV)의 마이크로컨트롤러 유닛(MCU)이 모터 운전을 정상 모드에서 에너지 회생 모드로 변경해야 한다.
이때, 그림 1(b)에 나와 있는 상태 I에서 스위칭 순서가 원래로 설정되어 있다고 가정하자.
따라서, 상태 I의 지속시간 동안의 에너지 회생 모드의 운전 원리를 분석한다.
그림 3(a)는 에너지 회생 모드의 등가 회로를 보여준다.
모터가 에너지 회생 모드로 전환되면, 백 EMF eab는 전압원이 된다.
에너지 회생 모드로 스위칭 순서를 변경해야 하며, 즉, 스위치 S2와 S3을 켜야 한다.
정상 모드와는 달리, 스위치 S2와 S3 모두 동기 PWM으로 운영된다.
S2와 S3의 턴온 기간 동안, 전압 vL은 Vbatt + eab이고, 전류 iin은 −iab 또는 ion으로 인해, winding이 활성화됨에 따라 전류가 흐른다.
반면, S2와 S3의 턴오프 기간 동안, 프리휠링 다이오드 D1과 D4를 통해 흐르는 전류 iin은 iab와 같으며, 전류 경로 ioff가 배터리로 반환된다.
따라서, 그림 3(b)에 S2, S3, 입력 전류 iin 및 상전류 iab의 해당 순서가 나와 있다.
Under different motor speeds and braking torques, the analysis of the winding current will be divided into the discontinuous conduction mode (DCM) and continuous conduction mode (CCM) [21].
Analyses of the equivalent circuit of Fig. 3(a) are based on the following assumptions.
서로 다른 모터 속도와 브레이킹 토크에서는, 전선 전류의 분석이 이산 폐쇄 모드(DCM)와 연속 폐쇄 모드(CCM)로 나뉠 것이다.
그림 3(a)의 등가 회로의 분석은 다음 가정에 기반한다.
1) The circuits are operating in the steady state.
2) With the switching period T, the switch is turned-on for Δton and turned-off for Δtoff.
3) All switches, conducting wires and motor windings are ideal and have no power dissipation.
1) 회로는 정상 상태에서 운전하고 있다.
2) 스위치는 스위칭 주기 T 동안에 Δton 동안 켜지고 Δtoff 동안에 꺼진다.
3) 모든 스위치, 도선 및 모터 횡선은 이상적이며 전력 소산이 없다.
DCM: If the motor operates at a lower speed and has a smaller braking torque, the motor will operate in DCM.
During S2 and S3 turn-on, the motor winding is inverse energizing such that the inductor voltage vL is equal to Vbatt + eab; the inductor voltage vL is equal to −Vbatt during S2 and S3 turn-off.
The related sequences of S2, S3, vL, and the inductor current iL are shown in Fig. 4(a).
The voltage across the inductor is
DCM: 모터가 낮은 속도에서 작동하고 브레이크 토크가 작을 경우 모터는 DCM에서 작동합니다.
S2와 S3이 켜질 때, 모터 도선은 역 에너지화되어 인덕터 전압 vL이 Vbatt + eab와 같습니다.
S2와 S3이 꺼질 때, 인덕터 전압 vL은 -Vbatt와 같습니다. S2, S3, vL 및 인덕터 전류 iL의 관련 시퀀스는 그림 4(a)에 표시됩니다. 인덕터 전압은
The changes in the inductor current iL under conduction and cutoff states are, respectively,
Steady-state operation requires that the inductor current at the end of the switching cycle be the same as that at the beginning.
It means that the net change in inductor current over one period is zero.
This requires
As seen by the above equations, one knows that the battery energy is delivered to the motor during S2 and S3 turn-on; during S2 and S3 turn-off, the braking energy is returned to the battery.
The energyW is equal to 0.5 × Vbatt × ΔiL × Δt.
Hence, for the battery, the energy proportion of the input to the output is expressed as
where Wr is the regenerative energy and Wt is the output energy.
Next, we use VEMF instead of eab of (6) to represent the motor back EMF, thus one can obtain a proportional relation of the battery I/O energy under the DCM as follows:
CCM: If the motor operates at a higher speed and has a larger braking torque, the motor will operate in CCM.
If S2 and S3 are turned-on, the motor winding is inverse energizing such that the inductor voltage vL is equal to Vbatt + eab.
On the contrary, if S2 and S3 are turned-off, the inductor voltage vL is equal to eab − Vbatt.
The change in iL of switches S2 and S3 in conducting and cutoff states are, respectively, expressed as
CCM: 모터가 높은 속도에서 작동하고 브레이크 토크가 큰 경우 모터는 CCM에서 작동합니다.
만약 S2와 S3이 켜진다면, 모터 도선은 역 에너지화되어 인덕터 전압 vL이 Vbatt + eab와 같습니다.
그러나 만약 S2와 S3이 꺼진다면, 인덕터 전압 vL은 eab - Vbatt와 같습니다.
S2와 S3의 인가 및 차단 상태에서의 iL 변화는 각각 다음과 같이 표현됩니다.
The related sequences of S2, S3, vL, and iL are shown in Fig. 4(b).
According to principle of inductor volt-second balance, the net change in inductor current over one period must be zero for steady-state operation, and the average inductor voltage is also zero [21].
Therefore, substituting (10) and (11) into (5), we obtain
S2, S3, vL 및 iL의 관련 순서는 그림 4(b)에 나타납니다.
인덕터 전압-초 균형의 원리에 따르면, 안정 상태 작동을 위해 한 주기 동안의 인덕터 전류의 순 변화는 0이어야 하며, 평균 인덕터 전압도 0이어야 합니다.
따라서 (10) 및 (11)을 (5)에 대입하면 다음이 성립합니다.
Accordingly, under the CCM, the proportional relation of the battery I/O energy can be obtained as follows:
Observing (9) and (14), one can see that the energyregenerative proportion is greater than one and increases proportionally with the back EMF.
Thus, the proposed method could improve the energy dissipative problem of the conventional brake and achieve the goal of the energy regeneration.
The above analyses only discussed the state I of Fig. 1(b). The states II–VI are similar to the state I, thus the analyses of states II–VI are omitted.
(9)와 (14)를 관찰하면, 에너지 회생 비율이 1보다 크며, 역 전기 기계력에 비례하여 증가함을 알 수 있습니다.
따라서 제안된 방법은 기존 브레이크의 에너지 소비 문제를 개선하고 에너지 회생의 목표를 달성할 수 있습니다.
위의 분석은 그림 1(b)의 상태 I에 대해서만 논의했습니다. 상태 II ~ VI는 상태 I과 유사하므로 상태 II ~ VI의 분석은 생략되었습니다.
Moreover, observing Fig. 1(b), the back EMFs eab, ebc, and eca are periodic sine wave.
Thus, if one wants to have the maximum regenerative energy, one has to use the maximum back EMF.
For example, a switching state exactly turns into the state I during the energy-regenerative mode.
Observing the three back EMF waveforms from Fig. 1(b), one knows that the back EMF eab is largest within state I.
At this time, the motor driver should operate PWM, switching in S2 and S3, to get the maximum regenerative energy.
Similarly, the inferences of the states II–VI are the same as the state I.
The winding energizing sequences with respect to the Hall sensors are shown in Fig. 5.
또한, 그림 1(b)를 관찰하면, 역 전기 기계력 eab, ebc 및 eca가 주기적인 사인파임을 알 수 있습니다.
따라서 최대 회생 에너지를 얻고 싶다면, 최대 역 전기 기계력을 사용해야 합니다.
예를 들어, 정확히 에너지 회생 모드에서 상태 I로 전환되는 스위칭 상태입니다.
그림 1(b)의 세 가지 역 전기 기계력 파형을 관찰하면, 상태 I에서 역 전기 기계력 eab가 가장 크다는 것을 알 수 있습니다.
이 때, 모터 드라이버는 최대 회생 에너지를 얻기 위해 PWM으로 작동하여 S2와 S3에서 스위칭해야 합니다.
마찬가지로, 상태 II ~ VI의 추론은 상태 I와 동일합니다. 홀 센서에 따른 윈딩 전원 시퀀스는 그림 5에 표시되어 있습니다.
C. Limit of the Energy Regeneration
In the actual application of the energy regeneration, another point of view should be considered.
It is the relation between the motor speed and braking torque.
If one actually considers the riding feeling and safeness, he is hoping that the EV can provide a smooth and reliable brake when the brake handle is pressed or the throttle is released.
Therefore, the proposed method regulates the braking torque according to the motor speed, rather than as a constant braking torque.
First, the relation between the motor speed (ω, km/h) and the braking torque (ibrake, A) is shown in Fig. 6.
Fig. 6 shows that the motor speed is inversely proportional to the braking torque because of two reasons.
One is that the too large braking torque at high speed might result in a danger of turn over; another is to prevent the battery damage.
에너지 회생의 실제 응용에서는 모터 속도와 제동 토크 사이의 관계를 고려해야 합니다.
누군가가 실제로 주행감과 안전을 고려한다면, 브레이크 핸들을 누르거나 스로틀을 놓을 때 EV가 부드럽고 안정적인 브레이크를 제공할 수 있기를 바랍니다.
따라서 제안된 방법은 일정한 브레이크 토크가 아니라 모터 속도에 따라 브레이크 토크를 조절합니다.
먼저, 모터 속도 (ω, km/h)와 브레이크 토크 (ibrake, A) 사이의 관계가 그림 6에 표시됩니다.
그림 6은 두 가지 이유로 모터 속도가 브레이크 토크에 반비례하는 것을 보여줍니다.
하나는 고속에서 너무 큰 제동 토크가 전복의 위험을 초래할 수 있기 때문입니다.
다른 하나는 배터리 손상을 방지하기 위한 것입니다.
Note that the energy-regenerative current is directly proportional to the motor speed and the braking torque.
Hence, if the rider brakes his EV at a high speed, the surge current of the energy regeneration will damage the battery at the braking transient.
In view of this, this paper averages the energyregenerative current by using the relation of Fig. 6 to prevent the battery from being damaged.
Thus, this control straight equation can be expressed as follows:
에너지 회생 전류는 모터 속도와 제동 토크에 직접 비례합니다.
따라서 라이더가 고속에서 EV를 제동할 때, 에너지 회생의 급격한 전류가 제동 순간 배터리를 손상시킬 수 있습니다.
이를 고려하여, 본 논문에서는 배터리 손상을 방지하기 위해 그림 6의 관계를 사용하여 에너지 회생 전류를 평균화합니다.
따라서 이 제어 방정식은 다음과 같이 표현될 수 있습니다:
where ωmax, ωmin, ibrake(max), and ibrake(min) are the highest and lowest motor speeds, the maximum and minimum braking torques, respectively.
Since the back EMF decreases with the motor speed down, little energy is not worthy to turn into the energy-regenerative mode.
Because the dissipative energy of the electric brake could be bigger than the returned energy of the battery under the low motor speed, the minimum speed of the energy-regenerative mode will be set in this controlled strategy.
여기서 ωmax, ωmin, ibrake(max), 그리고 ibrake(min)은 각각 최고 및 최저 모터 속도, 최대 및 최소 제동 토크입니다.
모터 속도가 감소함에 따라 백 EMF도 감소하기 때문에, 소량의 에너지는 에너지 회생 모드로 변환하는 것이 가치가 없습니다.
전기 브레이크의 소산 에너지가 낮은 모터 속도에서 반환된 배터리의 에너지보다 큰 경우가 있으므로, 이 제어 전략에서는 에너지 회생 모드의 최소 속도가 설정됩니다.
(3) System Scheme and Implementation
A. System Structure of the EV
Fig. 7 shows the overall views of the LEV prototype.
The two-wheel drive LEV is driven by two hub BLDCMs.
In addition, the power source of the LEV called a “Portable Compound Battery Management System (PCBMS)” is composed of two Li-ion battery packs and a series lead-acid battery [22].
The purpose of the PCBMS is to combine the advantages of the high energy density of Li-ion battery and the high power density of lead-acid battery.
By this combination, the PCBMS can compensate their congenital deficiencies of the two battery types to each other.
The two Li-ion battery packs provide the constant power for the series lead-acid battery via two boost converters, besides the series lead-acid battery provides simultaneously the power for the motors via the motor drivers.
Fig. 7는 LEV 프로토 타입의 전체적인 모습을 보여줍니다.
이 두 바퀴 구동 LEV는 두 개의 허브 BLDCM에 의해 구동됩니다.
또한 LEV의 전원원인 "휴대용 복합 배터리 관리 시스템 (PCBMS)"은 두 개의 리튬 이온 배터리 팩과 시리즈 납 산전지로 구성되어 있습니다.
PCBMS의 목적은 리튬 이온 배터리의 고 에너지 밀도와 납 산전지의 고 전력 밀도의 장점을 결합하는 것입니다.
이러한 결합을 통해 PCBMS는 두 배터리 유형의 선천적인 결함을 상쇄시킴으로써 서로 보완할 수 있습니다.
두 개의 리튬 이온 배터리 팩은 두 개의 부스트 컨버터를 통해 시리즈 납 산전지에 일정한 전력을 제공하며, 시리즈 납 산전지는 모터 드라이버를 통해 동시에 모터에 전원을 공급합니다.
B. System Structure of the Motor Driver
Fig. 8 shows the system structure of the motor driver.
In this driver system, the switching frequency of the current mode PWM controller is with 20 kHz.
The signal decoder has three input signals from Hall sensor signals (H1 − H3): a PWM controlled signal, a brake, and an output command signals.
If the output command is high, this indicates that the MCU allows the decoder to output the switching signals.
To the contrary, the decoder has no signal output.
The MCU includes two input and three output signals.
The inputs are the throttle and brake signals; and the outputs are the brake, output, and current commands.
When the motor operates in the normal mode, theMCU has a throttle signal input but without the brake one.
Thus, the MCU will output a current command to the current comparator.
On the other hand, if the motor operates on the energy-regenerative mode, the brake signal is with the highest priority by the MCU.
Fig. 8는 모터 드라이버의 시스템 구조를 보여줍니다.
이 드라이버 시스템에서는 전류 모드 PWM 컨트롤러의 스위칭 주파수가 20 kHz로 설정됩니다.
신호 디코더에는 Hall 센서 신호 (H1 - H3)에서 세 개의 입력 신호가 있습니다: PWM 제어 신호, 브레이크 및 출력 명령 신호입니다.
출력 명령이 높은 경우, 이는 MCU가 디코더가 스위칭 신호를 출력할 수 있도록 허용한다는 것을 나타냅니다.
반대로, 디코더에는 신호 출력이 없습니다.
MCU에는 두 개의 입력과 세 개의 출력 신호가 있습니다.
입력은 스로틀 및 브레이크 신호이고, 출력은 브레이크, 출력 및 전류 명령입니다.
모터가 정상 모드에서 작동하는 경우, MCU에는 스로틀 신호 입력이 있지만 브레이크 신호는 없습니다.
따라서 MCU는 전류 비교기에 전류 명령을 출력합니다.
반면에, 모터가 에너지 재생 모드에서 작동하는 경우, 브레이크 신호가 MCU에서 가장 높은 우선 순위를 가집니다.
(4) Simulation and Experimental Results
To verify the feasibility of the proposed motor driving system of the EV, computer simulations are first realized by PSIM (simulation software by Powersim Inc.) and MAX + PLUS II software.
PSIM is used to simulate the motor driver and program the signals of the decoder in a subcircuit, as shown in Fig. 9.
EV의 제안된 모터 구동 시스템의 실행 가능성을 검증하기 위해, 먼저 Powersim Inc.의 시뮬레이션 소프트웨어 PSIM과 MAX + PLUS II 소프트웨어를 사용하여 컴퓨터 시뮬레이션을 실시합니다.
PSIM은 모터 드라이버를 시뮬레이션하고 서브회로에서 디코더의 신호를 프로그래밍하는 데 사용되며, 이는 그림 9에 표시되어 있습니다.
Moreover, MAX + PLUS II is used to check the correctness in the signal decoder, as shown in Fig. 10.
Fig. 11(a) and (b), respectively, show the simulation and experimental results of the Hall sensor signals (H1, H2, and H3) and phase currents (ia, ib, and ic) under the normal mode.
또한, MAX + PLUS II는 신호 디코더의 정확성을 확인하는 데 사용됩니다, 이는 그림 10에 표시됩니다.
그림 11(a)와 (b)는 각각 정상 모드에서 홀 센서 신호(H1, H2 및 H3) 및 상류(ia, ib 및 ic)의 시뮬레이션 및 실험 결과를 보여줍니다.
On the other hand, Fig. 12(a) and (b), respectively, show the simulation and experimental results of the Hall sensor signals and phase currents under the energy-regenerative mode.
Comparing Fig. 11 with Fig. 12, one can see that the current directions of the two modes are exactly the inverse of each other, which coincides with the theoretical analyses.
반면에, 그림 12(a)와 (b)는 에너지 회생 모드에서 홀 센서 신호와 상류의 시뮬레이션 및 실험 결과를 각각 보여줍니다.
그림 11과 그림 12를 비교하면 두 모드의 전류 방향이 정확히 서로의 반대임을 알 수 있으며, 이는 이론적 분석과 일치합니다.
Fig. 13 shows the experimental results of the mode transformation (normal → energy regeneration → normal) during a short time.
Observing Fig. 13, one sees that the phase current has two 6-ms intervals with zero level before enables and disables the electric brake.
This is to prevent the spike current from the power switches being damaged during the transient of the mode transformation (i.e., normal → energy regeneration or energy regeneration → normal mode).
Therefore, the MCU will or will not output transmit a brake command after this 6-ms interval such that the motor goes into the energy regeneration or normal mode.
그림 13은 짧은 시간 동안 모드 전환(normal → energy regeneration → normal)의 실험 결과를 보여줍니다.
그림 13을 관찰하면, 전류가 전기 브레이크를 활성화하거나 비활성화하기 전에 제로 레벨의 6-ms 간격을 가지고 있음을 알 수 있습니다.
이는 모드 변환(즉, 정상 → 에너지 회생 또는 에너지 회생 → 정상 모드) 중에 전원 스위치로부터의 스파이크 전류가 손상되는 것을 방지하기 위한 것입니다.
따라서, MCU는 이 6-ms 간격 이후에 브레이크 명령을 출력하거나 출력하지 않습니다.
이로써 모터가 에너지 회생 또는 정상 모드로 들어갑니다.
Next, note that the different braking torques result in different energy regenerations under the same motor speed.
It can be seen by Fig. 14 that the braking torque is directly proportional to the regenerative energy.
그 다음으로, 동일한 모터 속도에서 서로 다른 브레이킹 토크는 서로 다른 에너지 회생을 초래한다는 점에 유의하십시오.
그림 14에서 브레이킹 토크가 회생 에너지에 직접 비례함을 알 수 있습니다.
On the other hand, Fig. 15 clearly proves that the higher motor speed can obtain the higher energyregenerative current (−ibatt) under the same braking torque.
반면에, 그림 15는 동일한 브레이킹 토크 하에서 더 높은 모터 속도가 더 높은 에너지 회생 전류(−ibatt)를 얻을 수 있다는 것을 명확히 입증합니다.
Consequently, the experimental results of Figs. 14 and 15 verify that the magnitude of the energy-regenerative current is directly proportional to the motor speed and the braking torque.
Simultaneously, these results are also corresponded with the theoretical analyses of this paper.
결과적으로, 그림 14와 15의 실험 결과는 에너지 회생 전류의 크기가 모터 속도와 브레이킹 토크에 직접 비례한다는 것을 검증합니다.
동시에, 이러한 결과는 또한 이 논문의 이론적 분석과 일치합니다.
For the driving range test, the related parameters and specifications are shown in Table I.
This test is performed to simulate that a LEV is driven by the rider in urban area [18].
Thus, the driving pattern consists of starting from rest, acceleration, high-speed cruise, deceleration, low-speed cruise, and braking to stop, as shown in Fig. 16(a).
One cycle of the driving pattern represents approximately a distance of 1.85 km.
First, the LEV purely uses two mechanical brakes without the energy regeneration to test the driving range.
Next, the two mechanical brakes of the LEV are removed; thus, the LEV only uses two electric brakes with the energy regeneration to test the driving range.
Experimental results show that the LEV’s driving range by the energy regeneration is increased to about 16.2%, as shown in Fig. 16(b).
It should be emphasized again that the proposed method could effectively increase the EV driving range without using additional circuit or components.
주행 거리 테스트를 위해 관련 매개 변수와 사양은 표 I에 표시되어 있습니다.
이 테스트는 LEV가 도심 지역에서 라이더에 의해 운전되는 것을 시뮬레이션하기 위해 수행됩니다.
따라서 주행 패턴은 정지에서 시작하여 가속, 고속 크루즈, 감속, 저속 크루즈 및 정지까지를 포함합니다(그림 16(a) 참조). 주행 패턴의 한 주기는 대략 1.85 km의 거리를 나타냅니다.
먼저, LEV는 에너지 회생 없이 순수한 두 개의 기계 브레이크만 사용하여 주행 범위를 테스트합니다.
그 다음, LEV의 두 개의 기계식 브레이크를 제거하고, 따라서 LEV는 에너지 회생을 통해 주행 범위를 테스트합니다.
실험 결과는 에너지 회생에 의한 LEV의 주행 범위가 약 16.2% 증가되었음을 보여줍니다(그림 16(b) 참조).
다시 한 번 강조하자면, 제안된 방법은 추가 회로나 구성 요소를 사용하지 않고도 EV의 주행 거리를 효과적으로 증가시킬 수 있습니다.
(5) Conclusion
This paper has proposed a simple but effective method of electric brake with energy regeneration for EV.
Without using additional converter, ultracapacitor, or complex winding changeover, the proposed method only changes the switching logic of the motor driver to achieve the goal of the electric brake with the energy regeneration.
Compared with the related methods, that is simple to implement. The advantages of the proposed method are listed as follows:
이 논문에서는 전기차(EV)를 위한 간단하지만 효과적인 에너지 회생과 함께 하는 전기 브레이크 방법을 제안하였습니다.
추가 변환기, 초커패시터 또는 복잡한 와인딩 전환 없이도 제안된 방법은 전기 브레이크와 에너지 회생의 목표를 달성하기 위해 모터 드라이버의 스위칭 로직만 변경합니다.
관련된 방법과 비교했을 때, 이 방법은 구현하기 간단합니다.
제안된 방법의 장점은 다음과 같습니다:
1) no need of any power converter;
2) no need of ultracapacitor for the braking energy to be
recharged to the battery;
3) no need to change or design specially the motor winding;
4) no need to change the circuit structure of the motor driver(inverter);
5) controllable and smooth electric braking torque;
6) enhances the safety of the EV;
7) increases the driving range of the EV.
1) 어떤 전력 변환기도 필요하지 않습니다.
2) 브레이킹 에너지를 배터리에 충전하기 위해 초커패시터가 필요하지 않습니다.
3) 모터 와인딩을 변경하거나 특별히 설계할 필요가 없습니다.
4) 모터 드라이버(인버터)의 회로 구조를 변경할 필요가 없습니다.
5) 조절 가능하고 부드러운 전기 브레이크 토크를 제공합니다.
6) EV의 안전성을 향상시킵니다.
7) EV의 주행 거리를 증가시킵니다.
In addition to the braking period, the release throttle period is also included in the energy-regenerative mechanism such that the EV is like engine vehicles having the engine brake.
Thus, the electric brake can improve rider’s comfort and enhance the EV’s safeness.
Simulation and experimental results have been presented to verify the feasibility and performances of the proposed method.
It has been shown that the EV driving range can be increased about 16.2%.
추가로, 브레이킹 기간 뿐만 아니라 스로틀을 해제하는 기간도 전기 재생 메커니즘에 포함되어 EV가 엔진 차량과 유사한 엔진 브레이크를 가질 수 있습니다.
따라서 전기 브레이크는 라이더의 편안함을 향상시키고 EV의 안전성을 높일 수 있습니다.
제안된 방법의 실현 가능성과 성능을 확인하기 위해 시뮬레이션 및 실험 결과가 제시되었습니다.
EV의 주행 거리를 약 16.2% 증가시킬 수 있다는 것이 입증되었습니다.